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We study the fundamental problem of two gas species whose molecules collide as hard
spheres in the presence of a flat boundary and with dependence on only one space
dimension. More specifically the steady linear problem considered is the one arising
when the second gas dominates as a flow moving towards the boundary with constant
microscopic velocity (and hence zero temperature). The boundary condition adopted
consists of prescribing the outgoing velocity distribution of the first gas at the boundary.
It is discovered that the presence of the boundary under general assumptions on the
outgoing distribution ensures the convergence of a series of path integrals resulting
in a convenient representation for the distribution of the velocities of the molecules
returning at the boundary.
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1. INTRODUCTION AND STATEMENT OF THE RESULT

We begin by noting that the Boltzmann equation with boundary conditions has
been previously considered in a number of works, for example the reader may
consult the work by Bardos, Caflisch, and Nicolaenko,(1) the zero-temperature
paper by Caflisch(3) where behavior in the interior is studied in a perturbative
setting with regard to applications to strong shock waves, as well as the works(8,12)

among many others. Our approach differs substantially from the previous works
since we investigate the structure of the solution in terms of contributions from the
individual particle paths and we look for an exact description of the solution at the
boundary in the velocity variable. Excellent reviews of kinetic theory in general
are Refs. 6 and 14 as well as.(13)

In our problem we consider molecules emitted from a flat boundary which
interact as hard spheres with the molecules of a second gas which have zero
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temperature and penetrate into the boundary. We will be interested in the distri-
bution of the velocities of the emitted molecules at the time of their return to the
boundary. The interactions between the emitted molecules themselves are ignored
and so a linear problem is studied. Accounting for the nonlinear interactions would
be an important continuation of this work. We must also point out that the zero
temperature distribution of the background is of course an idealization. However
it is reasonable to expect that many of the features studied here will be still present
in the case of the more natural Gaussian distribution of the background (see the
concluding remarks).

The equation at hand is time independent, valid for x ≥ 0, and takes the form

ξ 1∂x f (ξ, x) = Q( f, ρδ(ξ − c))

f (ξ, 0) = f +(ξ ) for ξ 1 > 0

where f (ξ, x) with ξ = (ξ 1, ξ 2, ξ 3) is the unknown velocity distribution and
ρδ(ξ − c) with c = (−c, 0, 0) for c > 0 is the background distribution where
ρ is the number density of the background. So the background molecules enter
the boundary and their distribution is homogeneous in the interior. Here Q is the
Boltzmann collision operator. To simplify the presentation let us assume that both
particle species have the same molecular mass, normalized to 1. The case when
the masses differ can be treated similarly. We will focus on determining the value
f −(ξ ) = f (ξ, 0) for ξ 1 < 0. After writing out Q as the difference between the
gain and loss terms due to collisions we have

ξ 1∂x f (ξ, x) = ρσ 2
∫

R3

∫
S+

f (ξ − ((ξ − ξ∗) · n)n)δ(ξ∗

+ ((ξ − ξ∗) · n)n − c)|(ξ − ξ∗) · n|dndξ∗

− ρσ 2
∫

R3

∫
S+

f (ξ )δ(ξ∗ − c)|(ξ∗ − ξ ) · n|dndξ∗

= ρσ 2 K f − ρσ 2π |ξ − c| f.

where n is the unit vector at which the collision occurs and S+ is the half sphere
(ξ − ξ∗) · n > 0, σ is the sphere radius. For our purpose we will take ρσ 2 = 1. This
is actually no restriction as explained in the remark on scaling after the statement
of the theorem. We will give a more convenient expression for K f (ξ0), but first to
elucidate it we will determine the region containing particles ξ1 which can influence
the region near ξ0 after experiencing a collision at the direction of n. In other words
given ξ0 = (ξ 1

0 , ξ 2
0 , ξ 3

0 ) we need to determine the set {n, ξ1 = (ξ 1
1 , ξ 2

1 , ξ 3
1 )} such that

ξ0 = ξ1 − ((ξ1 − c) · n)n.



The Boundary Structure of Zero-Temperature 97

ξ1

1

n

ξ
0

0
C

L

ξ
0 l

ξ2

3ξ

ξ

ξ1

−c

Fig. 1. The plane of influence.

In the coordinate system n, n⊥ let Pn and P⊥
n denote the corresponding projections.

Since the effect of a collision is to exchange the momentum along n, the new
momentum along n of the particle hit by a background particle is always Pn(c),
i.e. we see that Pn(c) = Pn(ξ0). This is satisfied iff n ⊥ ξ0 − c which determines
n. But then we must also have P⊥

n (ξ1) = P⊥
n (ξ0). Therefore the particles with

velocity ξ1 that can influence the velocity ξ0 lie along the plane Lcξ0 passing
through ξ0 and perpendicular to ξ0 − c (see Fig. 1). In fact it can be easily shown
that the interior of the sphere Cξ0 on the figure is the region influenced by ξ0 after
an arbitrary number of collisions and the exterior is the region that influences ξ0.
This answers our question. So clearly K will be given by an integral along this
plane but we need to determine the correct weight. Although a direct calculation
is of course possible, for brevity to obtain the exact formula we will make use of
Torsten Carleman’s well-known representation (Refs. 4 and 5) for the gain term,
namely:

Q+( f, g)(ξ ) =
∫

R3

∫
S+

f (ξ − ((ξ − ξ∗)·n)n)g(ξ∗ + ((ξ − ξ∗)·n)n)|(ξ − ξ∗)·n|dndξ∗

=
∫

R3

g(ξ1)

|ξ − ξ1|
∫

Lξ1 ,ξ

f (ξ2)dξ2dξ1,

where Lξ,ξ1 denotes the plane perpendicular to ξ − ξ1 and passing through ξ . For
completeness the proof of this representation is briefly indicated in the appendix.
Specializing the above to the case which interests us, namely g(ξ ) = δ(ξ − c)we
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obtain that

K f (ξ0) = 1

|ξ0 − c|
∫

Lc,ξ0

f (ξ1)dξ1. (1.1)

In what follows we will omit c from the subscript of the plane since c is fixed.
We are going to prove the following

Theorem 1.1. Let there be given an outgoing (from the boundary) distribution
f +(ξ ) satisfying 0 ≤ f + < M which is supported in the compact region ξ 1 > 0
and |ξ − c| < R. Then for the incoming (to the boundary) distribution denoted by
f −(ξ0) and defined for ξ 1

0 ≤ 0 we have the following:

(i) An explicit series with positive terms with factorial convergence exists such
that

f −(ξ0) =
∞∑

n=1

f −
n (ξ0)

where the n-th term represents the contribution of particles returning after n
collisions, and specifically the rate of convergence is such that if Rn denotes
the remainder term then the mass flux due to it satisfies∫

R
3
ξ0

,ξ 1
0 <0

∣∣ξ 1
0

∣∣Rn(ξ0) dξ0 <
M R5

c
ne−n+1.

whenever it is satisfied that

n > 30

(
log

R

c
+ 10

)
.

We see that the number of terms describing the solution grows linearly
in log R

c .
(ii) If we use the notation r0 = |ξ0 − c| the solution f −

n (ξ0) is identically 0 for
r0 > R and it possesses a singularity at r0 = 0. The specific nature of the
singularity is such that for r0 < c/2 and any δ > 0 we have

f −(ξ0) ≤ Cδ(c, R)
M R3

c
∣∣ξ 1

0

∣∣
1

r1+δ
0

were Cδ is an explicit constant whose dependence on c and R is indicated in
the proof.

We remark that although the above bound already indicates fast convergence,
a more careful analysis may improve notably the constants given. But for us it is
most important that these constants are explicit and that in our proof we establish
the mechanism leading to this convergence. The estimates indicated above present
integrable functions and the first terms of the series mentioned above contain
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essentially all the mass flux of the solution. The mass flux is the natural measure
of the distribution at the boundary (as is made precise for example in Ref. 7).
The results of this theorem are in contrast to other situations in kinetic theory
where such expansions cannot be expected to converge with any reasonable rate.
In these other situations the lack of fast convergence is due to the fact that (fluid)
components of the solution corresponding to the kernel elements of the collision
operator (and representing thermodynamic equilibrium) propagate in the interior
of the domain of interest (in our case K − ν has only one kernel element which
is the Dirac delta and our linear equation only has conservation of mass). In our
problem the characteristics do not propagate inside the domain so these fluid
components are irrelevant and we are studying a purely kinetic phenomenon. To
study fluid components propagating in the interior (at least in the case of Gaussian
background where L2 space methods are applicable) understanding of the spec-
trum and the use of perturbation theory are most natural (see for instance Ref. 11).
Although we do not investigate this here, it is reasonable to expect that a descrip-
tion similar to ours will also apply to the kinetic part of the solution in the case of
the so called linearized collision operator (when a perturbation of the background
is considered so energy and momentum are also conserved) but in such a case
depending on the speed of the background and the conditions at infinity a fluid
component of the solution may also appear as a remainder term in the above series.

The behavior r0 → 0 presented by the above formula is essentially optimal,
in fact except for the δ-correction it is already displayed by the first term of the
series. In the limit c → 0 we have Cδ/c → ∞. This reflects the fact that when
the background velocity vanishes the linearized problem does not posses a finite
steady solution with zero flux at infinity. The equilibrium in the case c ≈ 0 is
due to the particles emitted from the wall interacting with themselves which is a
nonlinear effect, or alternatively a linearization is necessary around certain density
which does not vanish away from the wall.

We hope that the understanding gained from this problem may be useful
in studying other boundary conditions, as for example the idealized situation
of specular reflection f (ξ 1, ξ 2, ξ 3) = f (−ξ 1, ξ 2, ξ 3) at x = 0. In this problem
it would be quite interesting to know the momentum flux

∫
R3(ξ )(ξ

1)2 f (ξ )dξ at
x = 0 which gives the force exerted on the boundary by the background through
the interaction with the particles trapped near the boundary.

Now we briefly discuss the scaling in this problem. There is no macroscopic
reference length in the x variable, so a Knudsen number cannot be specified.
Furthermore since we are taking x = 0 as the region of attention we cannot expect
our solution to be influenced by the dimensional factor ρσ 2. This is in fact exactly
so: the above theorem would hold unchanged even if there was such a factor in the
right hand side of the original equation. The reason is that we are not interested
in how long or how far a particle had to travel before return, we only care for the
velocity at return. A proof of this is noted after Eq. (2.1).
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2. THE PARTICLE PATH REPRESENTATION AND PROOF

OF THE RESULT

To prove the above result we will consider the contributions of the different
paths a particle coming out of the boundary can travel until it returns to the wall as
an incoming particle. More specifically we will distinguish these paths according
to the number of collisions experienced before return. An easy approach to this
representation comes from the Laplace transform formalism. Let L f (ξ, z) denote
the Laplace transform in the x variable. We have:

ξ 1∂x f (ξ, x) = K f − ν f ⇒
ξ 1[zL( f ) − f (ξ, 0)] = L(K f ) − νL( f ) ⇒

L( f ) = [zξ 1 − K + ν]−1ξ 1 f (ξ, 0) ⇒
f (ξ, x) = L−1([zξ 1 − K + ν]−1ξ 1 f (ξ, 0)) ⇒

f (ξ, x) = 1

2π i

∫ i∞

−i∞
ezx [zξ 1 − K + ν]−1ξ 1 f (ξ, 0) dz,

or if we switch to the more convenient Fourier notation

f (ξ, x) = 1

2π

∫ ∞

−∞
eikx [ikξ 1 − K + ν]−1ξ 1 f (ξ, 0) dk

Now if we write

[ikξ 1 − K + ν]−1 = [ikξ 1 + ν]−1[I − K [ikξ 1 + ν]−1]−1

and introduce the notation �(k, ξ ) = K [ikξ 1 + ν]−1 we can write the expansion

[I − �(k, ξ )]−1 = I + �(k, ξ ) + �(k, ξ )2 + · · ·
and we obtain a series representation for the solution. It is the convergence of the
series resulting from the above representation that we shall establish, provided the
outgoing distribution satisfies the requirements in the theorem. The zeroth term in
the series represents particles experiencing no collision at all after leaving the wall,
so it will be ignored. The n-th term’s contribution to the incoming distribution is

f −
n (ξ0) = 1

2π

∫ ∞

−∞

eikx

ikξ 1
0 + π |ξ0 − c|�

n(k, ξ )ξ 1 f +(ξ ) dk
x=0

= 1

2π

∫ ∞

−∞

1

ikξ 1
0 + π |ξ0 − c| K

1

ikξ 1
1 + π |ξ1 − c| (2.1)

× K
1

ikξ 1
2 + π |ξ2 − c| · · · K

1

ikξ 1
n + π |ξn − c| |ξ

1
n | f +(ξn) dk.
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and we will construct f − as

f − =
∞∑

n=1

f −
n .

It is easy to see that this decomposition corresponds to the number of collisions
experienced by a particle, since by the convolution theorem for the Fourier trans-
form

F−1

⎛
⎝ 1∏n

i=0

(
ik + π |ξi −c|

ξ 1
i

)
⎞
⎠

= F−1

⎛
⎝ 1

ik + π |ξ0−c|
ξ 1

0

⎞
⎠ 	 F−1

⎛
⎝ 1

ik + π |ξ1−c|
ξ 1

1

⎞
⎠ 	 · · · 	 F−1

(
1

ik + π |ξn−c|
ξ 1

n

)

=
(

e
− π |ξ0−c|

ξ1
0

x
χ{sgn(ξ 1

0 )x>0}
)

	

(
e
− π |ξ1−c|

ξ1
1

x
χ{sgn(ξ 1

1 )x>0}
)

	 · · · 	
(

e
− π |ξn −c|

ξ1
n

x
χ{sgn(ξ 1

n )x>0}
)

where the χ are just indicator functions. This expression is a convolution of
exponential distributions (up to the normalizing constants) where the exponent is
1/l where l is the expected distance a particle will travel before it experiences a
collision (1/l is the ratio of the collision frequency to the velocity). Our formula
(2.1) differs from this by the additional information due to K which specifies what
new velocity the particle is likely to acquire after the collision is experienced.
With this it becomes clear that iterating n steps represents a path consisting of n
collisions.

To address the scaling question mentioned in the introduction, note that if we
had included ρσ 2 then in (2.1) after changing k ′ = k/(ρσ 2), dk = ρσ 2dk ′ this
constant will disappear at x = 0 as desired. At x > 0 it of course doesn’t disappear
but will appear in an exponential factor of spatial decay.

Now fix a set of values ξ0, ξ1, . . . , ξn in the above expression. Let it be the
case that ξfori1 > 0 and ξ 1

retj < 0 where { f ori } and {retj} are sets of indices which
partition {0, 1, . . . , n} with i = 1, 2, . . . , l, and j = 1, 2, . . . , m where l + m =
n + 1. The first correspond to particles moving forwards (away from the wall) and
the second to returning particles (moving backwards). Throughout its n-collision
trip a particle could experience an arbitrary sequence of forward and backward
movements. We will perform the dk integration with these fixed velocities. For
this it is necessary to compute the following integral (distinguish

√−1 from the
index i):

∫ ∞

−∞

dk∏l
i=1

(
ik|ξ 1

f ori
| + π |ξ f ori − c|) ∏m

j=1

( − ik|ξ 1
retj | + π |ξretj − c|) .
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Introducing the notation

ai = π |ξfori − c|
|ξ 1

fori
| , b j = π |ξret j − c|

|ξ 1
ret j

|
The above integral can be written as

∏l
i=1 ai

∏m
j=1 b j

πn+1
∏n

i=0 |ξi − c|
∫ ∞

−∞

dk∏l
i=1(ik + ai )

∏m
j=1(b j − ik)

.

It is possible to evaluate the above integral explicitly. In fact its evaluation is the
following Lemma

Lemma 2.1.

(i) If for ai > 0, b j > 0 we use the notation

J l,m(a1, . . . , al , b1, . . . bm) =
∫ ∞

−∞

∏l
i=1 ai

∏m
j=1 b j∏l

i=1(ik + ai )
∏m

j=1(b j − ik)
dk

then the following recursive relation holds

J l,m = al

al + bm
J l−1,m + bm

al + bm
J l,m−1.

(ii) Suppose that we have k indices j1, j2, . . . , jk such that b js < B for s =
1 . . . k and we also have that ai > A for all i . Then we have

J l,m ≤ 1

2π
Bk

(
1 + 1

A

)l+m

.

Proof:

(i) Notice that

al J l−1,m + bm J l,m−1 =
∫ ∞

−∞

(ik + al + bm − ik)
∏l

i=1 ai
∏m

j=1 b j∏l
i=1(ik + ai )

∏m
j=1(b j − ik)

dk

= (al + bm)J l,m

⇒ J l,m = al

al + bm
J l−1,m + bm

al + bm
J l,m−1

as desired.
(ii) Notice that J l,m(a1, . . . , al , b1, . . . , bm) is a symmetric function in each

set of variables. So without loss of generality we can assume that b1 ≤ B.
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�

The recurrence relation from i) tells us we can construct J l,m by constructing
a tree with a root at J l,m and each node having either one or two children. All
the leaves of the tree contain either the expression a2

a2 + b1
J 1,1 or the expression

b2
a1 + b2

J 1,1. This is because by elementary contour integration we have J 0,s =
J s,0 = 0 for all s > 1. Also notice that by contour integration

J 1,1 =
∫ ∞

−∞

a1b1

(ik + a1)(−ik + b1)
dk = 1

2π

a1b1

a1 + b1
= 1

2π

b1

1 + b1
a1

≤ 1

2π
B

We will prove the claim by induction on m, l, k. By the above it holds for l = 1,
m = 1, k = 1.

Case 1: bm not in {b j1 , . . . , b jk }. Then J l−1,m and J l,m−1 both still contain k
arguments b j with b j < B, so the induction hypothesis applies to them
with k unchanged, i.e.

J l,m = al

al + bm
J l−1,m + bm

al + bm
J l,m−1 ≤ max{J l−1,m, J l,m−1},

and the result follows by induction.
Case 2: bm ∈ {b j1 , . . . , b jk }. Then J l,m−1 has at least k − 1 arguments b j with

b j < B and J l−1,m still has k arguments b j with b j < B. So applying the
induction hypothesis

J l,m ≤ 1

2π

bm

al + bm
Bk−1

(
1 + 1

A

)m+l−1

+ 1

2π

al

al + bm
Bk

(
1 + 1

A

)m+l−1

≤ 1

2π

Bk

A

(
1 + 1

A

)l+m−1

+ 1

2π
Bk

(
1 + 1

A

)l+m−1

= 1

2π
Bk

(
1 + 1

A

)l+m

.

as desired.

Remark 2.2. The above estimate is not optimal, but it will be by far sufficient
for our purpose. Notice that the expressions J l,m are trivially all less than J 1,1. In
particular the growth due to the (1 + 1

A ) term in the above is not optimal.

Let αi be the angle between ξi−1 and ξi with respect to a pole centered at c
and let ri = |c − ξi |. Let li , φi be the polar coordinates in the plane Lξi−1 centered



104 Sotirov

Fig. 2. The support of the initial data and notation.

at ξi−1. This notation is illustrated on Fig. 2. With this we can write (1.1) in the
more convenient form

K f (ξi−1) = 1

ri−1

∫ 2π

0

∫ ∞

0
li f (li , φi ) dli dφi .

Eventually we will pick the angles αi as variables of integration. So we consider
the vectors

ξi (ξ0, α1, φ1, α2, φ2 . . . αn, φn).

From the definition we must restrict αi ∈ [0, π/2). We have that

ri = ri−1

cos αi
and so ri = r0

cos α1 cos α2 . . . cos αi

Notice that the angles φ1, φ2, . . . φi are not needed to express ri . This is important
in what follows. Due to the assumption on the support of f + (the shaded area on
Fig. 2) we require that c ≤ rn ≤ R which translates to

c ≤ rn = r0

cos α1 cos α2 . . . cos αn
≤ R. (2.2)

This restriction is clearly not optimal, since it includes an area larger than the
support of f +. This however will only affect the final estimate by a fixed constant
related to the ratio of the volumes of the parts of the shell c < rn < R on the two
sides of ξ 1 = 0. In any case this does not affect the convergence structure that we
study.

Let W be the set of αi in [0, π/2)n which satisfy the above condition (2.2).
Also let U denote [0, 2π ]n which is the domain of integration in the φi . We also
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have

li = ri−1 tan αi and dli = ri−1

cos2 αi
dαi .

With this notation, the definition of K from (1.1) and using the Lemma we
can write:

f −
n (ξ0)

= 1

2π

∫ ∞

−∞

∫
U

∫
W

1

ikξ 1
0 + π |ξ0 − c|

1

|ξ0 − c| l1(ξ0, α1)

× 1

ikξ 1
1 + π |ξ1(ξ0, α1, φ1) − c|

1

|ξ1(ξ0, α1, φ2) − c| l2(ξ0, α1, φ1α2, φ2)c . . .

× 1

ikξ 1
n + π |ξn − c|

1

|ξn − c| ln(ξ0, α1, φ1, . . . , αn, φn)|ξ 1
n

(ξ0, α1, φ1 . . . , αn, φn)| f +(ξn)
dln

dαn

dln−1

dαn−1
. . .

× dl2

dα2

dl1

dα1
dαn, . . . dα1dφ1 . . . dφndk

× = 1

2πn+2

∫
U

∫
W

(
1

r0

sin α1

cos α1
r0

1

r1

sin α2

cos α2
r1 . . .

1

rn−1

sin αn

cos αn
rn−1

)

×
(

r0
1

cos2 α1
r1

1

cos2 α2
· · · rn−1

1

cos2 αn

)
1

r0r1 . . . rn

× J (a1, . . . , al , b1, . . . , bm)|ξ 1
n | f +(ξn) dαn . . . dα2dα1dφn, . . . dφ1

= 1

2πn+2

∫
U

∫
W

∏n
i=1 sin αi(∏n

i=1 cos αi

)3
J (a1, . . . , al , b1, . . . , bm)

|ξ 1
n |

rn
f +(ξn)

× dαn . . . dα2dα1dφn . . . dφ1.

where J (a1, . . . , al , b1, . . . , bm) denotes the integral from Lemma 2.1. The num-
bers l and m here are a function of the specific choice ξ0, ξ1, . . . ξn . Now using
(2.2) we arrive at

f −
n (ξ0) <

1

2πn+2

∫
U

∫
W

r3
n

r3
0

(
n∏

i=1

sin αi

)
J (a1, . . . , al , b1, . . . , bm)

×
∣∣ξ 1

n

∣∣
rn

f +(ξn){dαi dφi }n
i=1. (2.3)

We will often refer to this representation in what follows. When we attempt to
bound the above expression there will be a factor of (2π )n from the integration in
the φi variables and there will be also a factor coming from an appropriate estimate
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of the J -contribution. We want to control these factors. To obtain a good estimate
we will split the set W in two parts W = W1 + W2. On the set W1 the J -term
inside the integral will posses geometric decay with n, and on the other hand after
a change of variables the measure of the set of integration corresponding to W2

will decay with n sufficiently fast even when r0 is small. We need to do this in order
to control f −

n in such a way that their sum remains an integrable function; if we did
not require this, a simpler estimate would still show factorial convergence, but only
pointwise in r0. Our extra effort is justified since f − is a probability distribution
and it is most natural in addition to pointwise estimates to establish the control
of the decay of f −

n in the weighted L1(ξ ) norm
∫
ξ 1<0 |ξ 1| f (ξ )dξ representing the

mass flux through the boundary of returning particles. We denote from now on
this norm by L1

w.
Pick 0 < β < 1 and define k = [βn] + 1 where the brackets indicate the

integer part. Also let D > 1 be a constant dependent on β but otherwise fixed that
will be specified later. Let W1 and W2 be defined as follows:

W1 : (α1, α2, . . . αn) ∈ W such that rk < c/D,

W2 = W − W1 i.e. W2 : (α1, α2, . . . αn) such that rk > c/D.

Notice our definition makes sense since r1, . . . , rk are completely determined by
α1, . . . , αk and r0 so no condition on the φi variables needs to be imposed. Now
with (2.3) in mind we write

f −
n = I n

1 + I n
2

where in I n
1 the region of integration in (2.3) with respect to the αi is W1, and

that for I n
2 is W2. To evaluate the integration over these two regions we employ

the following lemma. It does not focus on the contribution of the J -part of the
integrand which will be bounded at the next stage.

Lemma 2.3. The following evaluations hold (assuming r0 < c/2):

(i)
∫

W1

n∏
i=1

sin αi dαn . . . dα1 ≤
∫

W

n∏
i=1

sin αi dαn . . . dα1 ≤ 1

n!

r0

c

(
log

R

r0

)n

(ii)
∫

W2

n∏
i=1

sin αi dαn . . . dα1 ≤ 1

n!

r0

c

k∑
j=1

(
n

k − j

) (
log

RD

c

)n−k+ j

×
(

log
c/D

r0

)k− j

.

where we recall that k = [βn] + 1.
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Proof:

(i) Pass to the variables of integration xi = cos αi . We obtain

∫
W

n∏
i=1

sin αi dαn . . . dα1 =
∫

�

dxn . . . dx1

where we have xi ∈ (0, 1] and � with the restriction from (2.2) is described
as:

� :
r0

c
≥ x1x2 . . . xn ≥ r0

R
.

So we need to compute V ol(�). If we further pass to the variables yi =
− log xi we get that the corresponding yi region �(�) is described as

�(�) : 0 < log
c

r0
≤

n∑
i=1

yi ≤ log
R

r0
and yi ∈ [0,∞).

Furthermore since xi = e−yi the Jacobean of the transformation is

D(x1, x2, . . . , xn)

D(y1, y2, . . . yn)
= Det

⎛
⎜⎜⎜⎝

e−y1 0 . . . 0

0 e−y2 . . . 0

. . . . . .

0 0 . . . e−yn

⎞
⎟⎟⎟⎠ = e− ∑n

i=1 yi .

On our region of integration this Jacobean can be bounded as

e− ∑n
i=1 yi ≤ e− log c

r0 = r0

c

If �n
x denotes the n-dimensional simplex with side x we have that

Vol
(
�n

x

) = xn

n!

so since �(�) is the difference of two such simplices we conclude that

Vol (�) ≤ r0

c

[
V ol

(
�n

log R
r0

)
− V ol

(
�n

log c
r0

)]
= 1

n!

r0

c

(
logn R

r0
− logn c

r0

)

<
1

n!

r0

c

(
log

R

r0

)n

as desired.
(ii) Let us perform the same changes of variables as in the previous part of

the lemma. Then if �2 is the region in the xi corresponding to W2 and if
�(�2) is the corresponding region in the yi from the condition specifying
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W2 we see that �(�2) this time is described by

�(�2) :

{
0 < log c

r0
≤ ∑n

i=1 yi ≤ log R
r0

and yi ∈ [0,∞),

0 < log c/D
r0

≤ ∑k
i=1 yi .

Notice that the complement in �n
log R

r0

of the region �(�2) is described by

�n
log R

r0

− �(�2) :

{
0 <

∑n
i=1 yi ≤ log R

r0
and yi ∈ [0,∞),

0 <
∑k

i=1 yi ≤ log c/D
r0

Now introduce the unit Jacobean transformation

z j =
j∑

i=1

yi , where j = 1 . . . n

so that finally we have

Vol (�(�2)) = Vol
(
�n

log R
r0

) − Vol (complement)

= 1

n!
logn R

r0
−

∫ log c/D
r0

0

∫ log c/D
r0

z1

. . .

∫ log c/D
r0

zk−1

∫ log R
r0

zk

. . .

∫ log R
r0

zn−1

× dzndzn−1 . . . dz2 dz1

=
k∑

j=1

1

(n − k + j)!

(
log

R

r0
− log

c/D

r0

)n−k+ j

× 1

(k − j)!

(
log

c/D

r0

)k− j

= 1

n!

k∑
j=1

(
n

k − j

) (
log

RD

c

)n−k+ j (
log

c/D

r0

)k− j

.

As before from the bound on the Jacobean of � we have

Vol (�2) ≤ r0

c
Vol (�(�2))

and so we get the desired expression. �

2.1. Bounding the I n
1 Term

On the set W1 we have a strong estimate on the sum in (2.3) as follows.
Notice that since rk < c/D < c we will have that the number of b’s in the sums
will be at least k, i.e. m ≥ k, since all velocities corresponding to r0, r1, . . . , rk
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must have ξ 1 < 0. Let in fact b1, b2, . . . , bk+1 be exactly the ones corresponding
to r0, r1, . . . , rk (or in other words to ξ0, ξ1, . . . , ξk). Observe that the requirement
rk < c/D also ensures that for j ≤ k + 1

b j ≤ π (c/D)

c − c/D
= π

D − 1
.

Furthermore notice that we always have ai > π , since if ξs corresponds to ai (and
so rs > c, ξ 1

s > 0) then

ai = π |ξs − c|
|ξ 1

s | > π
rs

rs − c
> π.

Now recall that that I n
1 is the same as the expression (2.3) with W replaced by

W1. Apply part (ii) of Lemma 2.1. with B = π
D − 1 and A = π to the J contribution

(and bound b1 = πr0/|ξ 1
0 | by itself rather than B which is certainly permitted in

the proof of the Lemma). Then after performing the φi integrations we have:

I n
1 <

(2π )n

2πn+2
(1 + 1/π )nπ k(D − 1)−k πr0

|ξ 1
0 |

R3

r3
0

∫
W1

n∏
i=1

sin αi
|ξ 1

n |
rn

f +(ξn) dαn . . . dα1.

Now we apply part (i) of Lemma 2.2, recall that k = [βn] + 1 and bound |ξ 1
n |

rn
< 1,

f +
ξn

< M , to get

I n
1 < M

2n(1 + 1/π )n((D − 1)/π )−βn

2π

R3

r3
0

r0

c

r0∣∣ξ 1
0

∣∣
1

n!

(
log

R

r0

)n

.

At this point note 2(1 + 1/π ) < 2.7 and given the choice of β choose D so that

((D − 1)/π )β > 2(2.7) = 5.4 (2.4)

which will give finally

I n
1 <

M

2π

R3

cr0

∣∣ξ 1
0

∣∣
1

n!

(
1

2
log

R

r0

)n

.

This clearly sums to an integrable function near ξ0 = c (i.e. near r0 = 0), in fact
we get

I1 =
∞∑

i=1

I n
1 <

M

2π

R3.5

cr1.5
0

∣∣ξ 1
0

∣∣ log
R

r0
.

For the pointwise estimate away from ξ0 = c, say for r0 > c/2, see the remark at
the end of this section which applies both to the terms I n

1 and I n
2 and shows that

there is no singularity near ξ 1
0 = 0.
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The convergence of the I1 term is also fast in the L1
w norm. If Rn

1 is the
remainder term use

∞∑
i=n

xi

i!
≤ xn

n!
ex (2.5)

to see that
∫

r0<R

∣∣ξ 1
0

∣∣Rn
1(ξ0)dξ0 ≤ M R3

2π

1

2nn!

∫ R

0

∣∣ξ 1
0

∣∣
cr0

∣∣ξ 1
0

∣∣
(

log
R

r0

)n

e
1
2 log R

r0 4πr2
0 dr0.

Switching to integration with respect to u = log R
r0

so dr0 = −r0du with r0 =
Re−u we have:

∫
r0<R

|ξ 1
0 |Rn

1dξ0 ≤ 2M R5

c

1

2nn!

∫ ∞

0
une− 3

2 udu

≤ 2M R5

c

1

2nn!
n!

(
2

3

)n+1

= 4M R5

3n+1c
. (2.6)

2.2. Bounding the I n
2 Term

For this term we cannot obtain too strong a bound on the J contribution in
(2.3), but by Lemma 2.2. ii) we have a desirable bound on the measure of the
integration region after a simple change of variables: namely that measure grows
only as a fraction of n power of log R

r0
which will ensure that when we add the

terms I n
2 we will not get a nonintegrable singularity at r0 = 0.

As in the remark to Lemma 2.1. since J l,m < J 1,1 bound the J part of the
integrand by 1

2π
b1. This remaining numerator term we can choose to be b1 where

we arrange the b j so that b1 corresponds to ξ0 so J < 1/(2π )b1 = πr0/(2π
∣∣ξ 1

0

∣∣)
and if we note |ξ 1

n |/rn < 1 we get

I n
2 <

(2π )n

2πn+2

πr0

2π
∣∣ξ 1

0

∣∣
R3

r3
0

∫
W

n∏
i=1

sin αi
|ξ 1

n |
rn

f +(ξn) dαn . . . dα1

<
2n

4π2

r0∣∣ξ 1
0

∣∣
R3

r3
0

∫
W

n∏
i=1

sin αi dαn . . . dα1.

We now study the mass flux due to the remainder term Rn
2 = ∑∞

i=n I i
2, i.e. we

consider the remainder in L1
w(ξ0). For this using part ii) of Lemma 2.2. we have
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∫
|ξ0|<R

∣∣ξ 1
0

∣∣I n
2 (ξ0) dξ0 <

q=[βn]∑
q=0,p=n−q

1

p!q!

2n M

4π2

∫ R

0

∣∣ξ 1
0

∣∣ R3

r3
0

r0∣∣ξ 1
0

∣∣
r0

c

(
log

RD

c

)p

×
(

log
c

Dr0

)q

4πr2
0 dr0

= 2n M R3

πc

q=[βn]∑
q=0,p=n−q

1

p!q!

(
log

RD

c

)p

×
∫ R

0
r0

(
log

c

Dr0

)q

dr0.

In the integral we make the substitution u = log c
Dr0

so that dr0 = −r0du and
r0 = c

D e−u and we get

∫ R

0
r0

(
log

c

Dr0

)q

dr0 = c2

D2

∫ ∞

log c
DR

uqe−2udu = c2

D2

∫ 0

log c
DR

+ c2

D2

∫ ∞

0
= c2

D2
[A1 + A2] .

By noting that in A1 the integrand is maximized at the left end point and estimating
the integral by the maximum of the integrand times the lenght of integration and
then computing A2 explicitly we get

A1 <

(
log

DR

c

)q+1 (
DR

c

)2

and A2 =
∫ ∞

0
uqe−2udu = q!

2q+1
.

With this we have

∫
|ξ0|<R

∣∣ξ 1
0

∣∣I n
2 (ξ0) dξ0 <

2n M R5

πc

q=[βn]∑
q=0,p=n−q

1

p!q!

(
log

DR

c

)n+1

+ 2n M R3c

π D2

q=[βn]∑
q=0,p=n−q

1

p!2q+1

(
log

DR

c

)p

.

The first sum is part of a binomial expansion and so

q=[βn]∑
q=0,p=n−q

1

p!q!

(
log

DR

c

)n+1

<
2n

n!

(
log

DR

c

)n+1

.
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The second sum is bounded by part of the remainder term in the Taylor explansion
of 1

2n e2 log DR
c so as in (2.5) we have

q=[βn]∑
q=0,p=n−q

2p

p!2n+1

(
log

DR

c

)p

<
1

2n+1

(
2 log DR

c

)(1−β)n+1

((1 − β)n)!
e2 log DR

c

= 1

2n+1

(
2 log DR

c

)(1−β)n+1

((1 − β)n)!

D2 R2

c2
.

with this we see

∫
|ξ0|<R

∣∣ξ 1
0

∣∣I n
2 (ξ0) dξ0 <

2n M R5

πc

2n

n!

(
log

DR

c

)n+1

+ M R5

2πc

1

((1 − β)n)!

(
2 log

DR

c

)(1−β)n+1

.

With the above bound on I n
2 we interchange the integration and summation in the

L1
w norm of the remainder Rn

2 = ∑∞
i=n I i

2 (which is permitted since the partial
sums are bounded by an integrable function as pointed out in the singularity
description further below). Thus we have

∫
|ξ0|<R

∣∣ξ 1
0

∣∣Rn
2(ξ0) dξ0 <

M R5 log DR
c

πc

[ ∞∑
i=n

4i

i!

(
log

DR

c

)i

+
∞∑

i=n

1

((1 − β)i)!

(
2 log

DR

c

)(1−β)i
]

.

In both sums above use that r ! > rr e−r . Thus in the second term use that ((1 −
β)i)! > ((1 − β)i)(1−β)i e−(1−β)i so that this term is bounded by

∞∑
i=n

(
2e log DR

c

(1 − β)i

)(1−β)i

<

∞∑
i=n

1

ei
= e−n+1

e − 1
(2.7)

provided that
(
2e log DR

c /((1 − β)i)
)(1−β)

< 1/e. To ensure this recall that by

(2.4) we can choose D = 1 + π5.4
1
β so log (RD/c) < 2 + 2/β + log(R/c) and

so (since i ≥ n) it is sufficient to choose

n >
2e1+ 1

1−β

1 − β

(
2 + 2

β
+ log

R

c

)
.
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For the first term similarly choosing n > 4e2(2 + 2/β + log R
c ) ensures

∞∑
i=n

4i

i!

(
log

DR

c

)i

<
e−n+1

e − 1
. (2.8)

Now noting that for n > 2 one has 4
3n+1 < e−n we combine the L1

w estimates on
the remainders Rn

1 in (2.6) and Rn
2 in (2.7) and (2.8) to get the desired result for

Rn = Rn
1 + Rn

2, i.e. for

n >

(
2 + 2

β
+ log

R

c

)
max

{
4e2,

2e1+ 1
1−β

1 − β

}

one has∫
|ξ0|<R

∣∣ξ 1
0

∣∣Rn(ξ0) dξ0 <
M R5

c

(
2 + 2

β
+ log

R

c

)
e−n+1 <

M R5

c
ne−n+1.

If we now choose β = 0.25 we get the statement of the theorem. We remark again
that a more careful analysis may improve markedly the final constants. But for us
it was most importnat that these constants are explicit and that we have established
the convergence mechanism. This completes the estimates of the mass flux of the
remainder terms in our theorem.

Next we show the singularity description. Using part ii) of Lemma 2.2. where
we bound the terms in the binomial expansion by the highest power in which they
appear we have that

I n
2 <

2n

4π2

r0∣∣ξ 1
0

∣∣
R3

r3
0

∫
W

n∏
i=1

sin αi dαn . . . dα1

<
2n M

4π2

R3

r3
0

r0∣∣ξ 1
0

∣∣
r0

c

2n

n!

(
log

RD

c

)n ∣∣∣∣log
c/D

r0

∣∣∣∣
βn

.

With this we get that the total contribution of the I n
2 terms is

I2 =
∞∑

n=1

I n
2 <

M

4π2

R3

cr0

∣∣ξ 1
0

∣∣
∞∑

n=1

1

n!
22n

(
log

RD

c

)n ∣∣∣∣log
c/D

r0

∣∣∣∣
βn

or

I2 <
M

4π2

R3

cr0

∣∣ξ 1
0

∣∣ log(RD/c)| log(c/Dr0)|βeC1(D,c,R)| log c/D
r0

|β
, (2.9)

where C1(D, c, R) = 4 log RD
c . This is an integrable function near r0 = 0 since as

β < 1 for all δ > 0 we have

eC1

∣∣ log c/D
r0

∣∣β

< Cδr
−δ
0 ,
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i.e. the term with the exponent grows slower than any negative power of r0. With
this in mind, only for the purpose of the singularity description, we pick on the
right hand side of (2.4) 3δ−1 instead of the choice there (so that in the I n

1 term the
exponent of r0 is −(1 + δ) instead of −1.5). So together with (2.9) we complete
the singularity description in part ii) of our main theorem:

f −(ξ0) = I1 + I2 ≤ Cδ(c, R)
M R3

c
∣∣ξ 1

0

∣∣
1

r1+δ
0

,

provided r0 < c/2 and where the constant Cδ(R, c) is explicitly derived from the
expression (2.9). When r0 > c/2 we note that the remark at the end of this section
further shows that there is in fact no singularity near ξ 1

0 = 0.
With this the proof of our theorem is completed.

Remark 2.4. For the pointwise estimate of f −(ξ0) we consider the case r0 > c/2
separately because in the above we have b1 for a remaining term in the sum and
b1 = π |ξ0−c|

|ξ 1
0 | is unbounded for |ξ 1

0 | near 0 (which can happen if r0 > c/2). This

point is very easy to correct however since now we are not looking to optimize the
singularity at r0 = 0. In fact we will bound the sum part of the integrand exactly
as in the previous section, except this time we choose the term remaining in the
denominator to be al rather than b1 where we agree that al is in fact the term
corresponding to ξn , i.e. al = π |ξn−c|

|ξ 1
n | . Notice that then this term cancels out with

the factor |ξ 1
n |

rn
in front of f (ξn) in the formula. Thus without splitting the set W

this time and just using an argument as the one in part i) of Lemma 2.2. (where the
lower bound on the sum of the yi is now just 0 so we simply bound the Jacobean
of � by 1) we get for r0 > c/2 the bound:

f −
n ≤ (2π )n

2πn+2
π

R3

r3
0

∫
W

n∏
i=1

sin αi Mdαn . . . dα1 ≤ 1

2π

R3

r3
0

2n

n!

(
log

R

r0

)n

M

The sum of these terms is relevant for r0 > c/2 and has no singularity at ξ 1
0 = 0

and vanishes at r0 = R which is the boundary of the domain of influence.

Remark 2.5. One would hope to extend the above proof to the case when the
background is a Gaussian distribution as is very natural for problems in kinetic
theory. It is expected that the same basic convergence mechanism will exist in
this case but technical difficulties will arise due to the fact that K now will not
have the strict shrinking property. In other words due to a diffusive component
(in magnitude related to the temperature) the sequence ri from the proof does not
have to be increasing—however note that this sequence will be close to increasing
with a very high probability which may lead to a very similar situation.
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APPENDIX: CARLEMAN’S REPRESENTATION FOR THE GAIN TERM

Consider the gain term

Q+( f, g)(ξ ) =
∫

R3

∫
S+

f (ξ − ((ξ − ξ∗) · n)n)g(ξ∗ + ((ξ − ξ∗) · n)n)

× |(ξ − ξ∗) · n|dξ∗dn

which according to the geometric intuition explained in the introduction we would
like to write as

Q+( f, g)(ξ0) =
∫

R3

g(ξ∗)Wg(ξ∗, ξ0)
∫

Lξ∗ξ0

f (ξ )W f (ξ∗, ξ0, ξ ) dξdξ∗

where Wg and W f are weight functions to be determined. We will use the sym-
metries of the ′-transformation so we observe∫

R3

φ(ξ )Q+( f, g)(ξ ) dξ =
∫

R3

∫
R3

f (ξ )g(ξ∗)
∫

S+
φ(ξ ′)|(ξ − ξ∗) · n|dndξ∗dξ.

Now the velocities ξ, ξ ′, ξ∗, ξ ′
∗ form the vertices of a rectangle and with ξ and

ξ∗ fixed this rectangle is inscribed in a fixed sphere S(ξ, ξ∗) in different ways
according to the value of n (n is parallel to ξ∗ − ξ ′

∗). If dσ is the surface measure
on that sphere one easily finds that

|(ξ − ξ∗) · n|dn = dσ

|ξ − ξ∗| .

Therefore∫
R3

φ(ξ )Q+( f, g)(ξ ) dξ =
∫

R3

∫
R3

f (ξ )g(ξ∗)
∫

S(ξ,ξ∗)
φ(ξ ′)

1

|ξ − ξ∗|dσdξ∗dξ.

and we will take φε(ξ ) = 1
(2πε)3/2 e−|ξ0−ξ |2/(2ε) so that we can compute

Q+( f, g)(ξ0) = lim
ε→0

∫
R3

φε(ξ )Q+( f, g)(ξ ) dξ.

After denoting z to be the midpoint between ξ and ξ∗ (which is the center of
the sphere for the dσ integral) a straightforward calculation using the above
representation shows∫

R3

φε(ξ )Q+( f, g)(ξ )dξ

=
∫

R3

∫
R3

f (ξ )g(ξ∗)
2

(2πε)1/2|z − ξ0|
×

[
e− 1

2ε (|z−ξ0|− |ξ−ξ∗|
2 )2 − e− 1

2ε (|z−ξ0|+ |ξ−ξ∗|
2 )2]

dξ∗dξ.
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Notice this symmetric expression shows that Q+( f, g) = Q+(g, f ), but of course
Q( f, g) = Q(g, f ) due to the nonsymmetric loss term. It is obvious that the
second term in the brackets above does not contribute in the limit ε → 0. Then
a careful but straightforward calculation shows that the first term in the limit is
equivalent to 1

|ξ−ξ∗|δ(h) where h is the distance from the plane Lξ∗ξ0 and we indeed
arrive at the desired formula

Q+( f, g)(ξ0) =
∫

R3

g(ξ∗)
1

|ξ∗ − ξ0|
∫

Lξ∗ξ0

f (ξ ) dξdξ∗.
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